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The problem of investigating the magnetoelastic vibrations of an electrically conduct- 
ing plate in a magnetic field reduces to the combined solution of the magnetoelasticity 

equations in the domain occupied by the plate (interior problem), and the electrodynamics 
equations of the rest of the domain of the space under consideration (exterior problem). 

An attempt is made to determine the magnetic field of a thin plate of finite conduc- 
tivity by the asymptotic integration of the combined equations of magnetoelasticity for 
the domain occupied by the plate. Jointly considering the exterior and interior problems, 

the magnetoelastic vibrations of a thin plate of finite conductivity are investigated. 
Some magnetoelasticity hypotheses are formulated for a plate of finite conductivity. 

In particular cases when the plate material is ideally conductive or a thin plate of 
infinite extent has finite electrical conductivity, the problem of the magnetoelastic vib- 

rations is solved relatively simply [l. 21. 
In the general case when the plate can have finite dimensions, and its material is 

finitely conductive, the solution of the problem posed becomes quite difficult, because 
the interior problem in this case does not separate, and the exact determination of the 
magnetic field of the plate in a three-dimensional formulation is not possible. 

1. An isotropic elastic plate of constant thickness % fabricated from a material 
with finite electrical conductivity and in an external magnetic field with given inten- 

sity vector Ho (H,, if,, .ff3). is considered. 
It is assumed that the magnetic and dielectric permeability of the plate equal one. 
The Maxwell equations for-a vacuum [37 are considered valid for the exterior domain 

(for. the whole domain outside the plate). 
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Let us introduce a Cartesian coordinate system (5, y, z) such that the middle plane 
of the plate would coincide with the sy coordinate @lane. In the coordinate system 

selected, the three-dimensional problem of magnetoelasticity reduces to the combined 

integration of the following systems of differential equations [3, 41. 
In the interior domain: 

Electrodynamic equations 

rot H = F[E+ $%x8 +$q 1 
rotE =- t;, divH=O, div E = 0 

Equilibrium equations of elasticity theory 

a5 a7 $+$+%+x=0 (XY) 

In the exterior domain: 

Electrodynamics equations 

rot HW = 
1 aE(*) rot Et”, _ _ k!!? - 

-Fat’ C at 

(1 l I) 

(1.2) 

(4.3) 

(for z > 12 the superscript is n = 1 , and for z & - It the superscript is n = 2 ). 
In the equations presented above’ H and E are, respectively, the magnetic and electri- 

cal field intensity vectors, U = U ( uX, u y, u,) is the displacement vector of the 

plate particles, u = cr (5, y, t) is the conductivity of the plate material , c the velo- 

city of light invacuum u,;= or (5, y, z, t) ,... , z,, = z,, (z, y, z, t) are the stress 
tensor components, R the vector of volume forces, p the density of the plate material, 
and t the time. 

We-shall henceforth limit ourselves to an investigation of the question of the magneto- 
elastic vibrations under small perturbations. As is known [l-3], in this case (1.1) and 
(1.2) can be linearized. 

Taking 

for the perturbed electromagnetic field components, and assuming that the induced elec- 
tromagnetic field components h,, h,, h,; E,, E,, E, are smalL(1.1) and (1.2) can 
be reduced to the following form 

aE aE, _ 1 ah L--_--X 
ay a2 C at 2 

aE aE x- 1 ah z=--2 
az 8X c at 
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(cont.) 

as well as 

-+ H, 
L ( 

E,+H,a~)-H,(E,-H,a~.)] 

Therefore, the magnetoelasticity problem has been reduced to the integration of the 

Eqs. (1.3)-Q. 5) taking account of the continuity of the electromagnetic field intensity 
components, the loading conditions of the exterior planes of the plate, and the boundary 

conditions. 

P, bet us consider the interior problem. Let us apply the method of asymptotic inte- 
gration of the system (l-4), (1.5) by limiting ourselves here to a construction of just 
the fundamental iteration process 151. As is known, the fundamental iteration process 
affords an opportunity to determine the slowly damped part of the solution, which in the 
case of the plate bending problem, for example, permits determination of the state of 

stress which the classical theory of plate bending yields in a first approximation, i. e. 
reduces to the ho-dimensional problem of elasticity theory obtained on the basis of the 

hypothesis of undeformable normals [5]. 
Following [Sl. it is assumed that the magnetic and electrical field intensities do not vary 

too rapidly in the z and y variables,butshonld evidently change rapidly in the z varia- 

ble. Expanding the scale in the z variable according to the formula 

z = h5 (2.4) 

it is assumed that the rapidity of variation of the magnetic and eWXrica1 field fntensities 
in the (3, y, 5) variables will not be t.oo great. After substituting (2.1). the linearized 

equations (3.4) take the form 
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aE L_h-‘f&-+?E, 
ay 

h-l!&!&_$t.g 

aEll aEx i ah= 
ax ay =-cat (2.3) 

ah 
&+!.+!&0, !.5*a++h-‘!&Q 

Let Q be any of the electromagnetic field and plate displacement components. Let 
us assign it as 

Q= h-‘li ha-‘Q(8) (2.4) 
a=1 

where 4 is an integer, different for different magnetic field and displacement compo- 

nents. 

Existing numerous exact solutions of plate bending problems in the absence of a mag- 
netic field show that Q must be selected in conformity with [5] for the stresses and dis- 

placements. In particular, for the displacements we shall have 

(nx, r$) 3 Q = 29 (UZ =w)-+q=3 (2.5) 
As regards the electromagnetic field components. various methods of selecting the 

number q are possible for them. Let us examine the following three versions: 

(h,, h,, E,) -+ Q = 17 (L L q/J + Q = 2 (2.6.1) 

(h,, h,, E,) + q = 2, (h,, J%, Eg) -j Q = 3 (2.6.2) 

(h&r E,)-+q = 3, (h,, Kc, E,)-+cI = 4 (2.6.3) 

Representing the electromagnetic field and plate displacement components in (2.2) 

and (2.3) in the form (2.4)-(2.6). let us equate coefficients of equivalent powers of h 
in the left and right sides of each equation taken separately. The equations obtained 

from (2.3) agree in all three versions, and are the following: 

aE(*-2) 1 ah(*-2) 
L-_-+ 

dX C 

_---=- 
ax ay 

-=- 
aG 

(2.7) 

Equations (2.2) result in distinct equations for each version separately. In particular : 
For the first version (2.6.1) 

For the second version (2.6.2) 
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For the third version (2.6.3) 

Equations (2.7) and (2.8) in the first version, (2.7) and (2.9) in the second version, 
and (2.7) and (2.10) in the third version form a chain of systems of equations of the 
fundamental iteration process in the successive I (S = 1, 2, 3, . . .) determination of 

the desired Q(s) , for each version separately. It must here be considered that Q(@ s 0 

for s ( 1 and also that the appropriate quantites Q(i), Q(a), . . . , Q@ are considered 
known in constructing Q(s+l) . 

Obtained in a first equation from (2. 8) for the first version is 

4113 al&l) 
-Ei-Hl+=O, ‘9 H2a$-Hla$j =o 

For the nonstationary problem this can only be when 

Hl = Hz = 0 

Therefore, the first version is possible when the given external magnetic. field is per- 
pendicular to the plane of the plate [H, = H, (0, 0, H,)]. Assuming H,, = Hz = 0, 
we obtain the following equations from (2.2) in place of (2.8): 

(2.11) 

In the second version there is no constraint on the given external magnetic field, and 
even in the first approximation the electrodynamics equations (2.7) and (2.9) are not 
separated from the equations of elastic plate vibrations and they must be considered 
jointly. 

As is seen from (2.7) and (2. lo), in the case of the third version the electromagnetic 
field components are determined in a first approximation independently of the elastic 

displacements. It should therefore be assumed that the third version is acceptable in 
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those magnetoelasticity problems for which it is known that the elastic vibrations influ- 
ence the change in the electromagnetic field slightly. 

There results from the above that the second version is most general, 
The solution of the system (2.7) and (2,11), (2.71 and (2.9), (2. ‘7) and (2.10) are 

represented in the form of two components Q(“) = Qi@) -+- Q*(s). The first component 
is interpreted as the integral of the homogeneous system obtained by discarding quanti- 
ties with superscript less than S, and the second member is understood to be some parti- 
cular integral of the mentioned system in which all quantities with supe&cript less than 
S, are considered known. 

Those equations of the homogeneous system which are obtained from (2. ‘7) are com- 
mon to all three versions and have the form: 

The remaining equations of the homogeneous system are: 
a) For the first version according to (2.11) 

ah$) ah(“) 
-- 
ax *= 

b) For the second version according to (2.9) 

c) For the third version according to (2.10) 

(2.12) 

(2.13) 

(2.15) 

The systems of equations obtained for each version separately : (2.12) and (2.13) 
(first version), (2.12) and (2.14) (second version), (2.12) and (2. l’s) (third version), are 
easily integrated. We hence note that the expressions ErlW, E#), EZiW, hziW in 
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all three versions are of the identical form 

E’“) = E$ (x y t) *, , I ? E$' = E$j (x, y, t) 

h$’ = h!“d (5, y, t), ESs,‘= _ c[az+2] (2.16) 

To determine hXi@) and hyics) we use the relationships 

which have been obtained in [S] and hold independently of the presence of the magnetic 

field. We then obtain from (2.13)-(2.15) 

For the first version 

For the second version 

For the third version 

Let US find the integrals of the systems of equations (2.7) and (2. ll), (2.7) and (2.9). 

(2.7) and (2.10). For all three versions we obtain from (2.7) 

E’(‘) - x - 
(2.17) 

E.‘“’ = 
I/ 

The expressions for h, *W and hy*W are found from (2.11). (2.9) and (2. lo) as fob 

lows : 
For the first version 
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For the second version 

For the third version 

All the quantities with an asterisk here are functions of the variables { t, y, I;, t) 

and the quantities without the asterisk and with superscript less than s are considered 

known. 
As has been mentioned earlier, Q(*If 0 for s (. 1, Hence, from (2.17) as well as 

[5], from which information on uJ, u @, w is taken, it follows that Q*(r) and Q*(s) which 

are marked with an asterisk, are identically zero for s = 1 and s = 2. 

Discussions on the asymptotic integration of systems of equations, which are expounded 
in detail in [S], have been repeated in this Section for the case of (1.4) and (1.5). Further 

discussions OR the asymptotic integration of systems of equations are omitted because 

what has been presented is adequate for the asymptotic method of integrating the tbree- 

dimensional equations of magnetoelasticity to be treated as the method of formulating 
well-forded hypotheses and for the formulation of initial hypotheses for the problem 

posed. 

In a first approximation the fundamental iteration process applied to the equations of 
elasticity theory reduce to the theory of plate bending ~derlying which is the hypothesis 
of undeformable normals [5, 61. 

Examining the solutions (2.16) and (2.17) obtained above for the linearized equations 

(1.4). we note that the quantities E,, E, and &are independent of the coordinate 5 

to the third approximation of the asymptotic integration. 
On the basis of the above the following hypotheses can be formulated for the interior 

problem of rna~e~~sti~~~. 
a) After deformation a straight line element of the plate normal to the middle 

plane remains a straight line normal to the deformed middle surface of the plate and 

retains its length. 

b) Tangential components of the excited electrical field intensity and the normal 
component of the excited magnetic field intensity remain invariant over the plate thick- 

ness. 
To the accuracy of the first assumption it should also be assumed that the nomal 

stresses CT, can be neglected as compared with the other stresses. The second hypothesis 
can be considered as some electrodynamic analog of the hypothesis of undeformable 
normals. 

3, The hypotheses formulated above for the interior problem are written analytically 
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as follows: 
dW 8W 

ux =-Z-Yp u,=-Q-9 u, =w(s,y,t) (3.9) 

here w is the desired normal displacement of the plate, cp, I#, f are the desired com- 

ponents of the corresponding electromagnetic field intensities. 

Assuming the hypotheses (a) and (b), i. e. (3.1). the interior three-dimensional mag- 
netoelasticity problem reduces substantially to a two-dimensional problem of magneto- 

elasticity of a plate. 

According to (3.1) we obtain from the linearized equations (1.4) 

(3.2) 
Integrating the representations (3.2) with respect to 2, between zero and 2. , and taking 
into account the conditions of electromagnetic field continuity for the whole space 

under consideration 

&=h,+, h, = h,+, E, = E,’ for z= h 

h r = h,-g h, = h,-, E, = Eze for z = -h 

we obtain for the remaining electromagnetic field components 

(3.3) 

h 
x 

= kc++ h,- 
2 

4imHa 2% - hs a% 
+7--i--_F- dzat 

4naH3 9 -ha aa, 
f72ayat 

(3:4) 

Therefore, all the electromagnetic field components are represented by means of the 

four desired functions cp, $, f, w by using (3.1) and (3.4). 
According to the hypothesis bf undeformable normals, there are the following relation- 

ships [5, S] together with (3.1) : 

E a=w 
0, = - z l,yB ( 

-+v$) asa (3.5) 

where E and Y are, respectively, the elastic modulus and Poisson’s ratio of the plate 
material 

By virtue of (3.1) and (3.5) and taking account of conditions on the plate surfaces 
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z r.2 = -q/z = 0, 5z=p(x, y, t) npn z=h 

z XL = t,, = 3, = 0 npn z = - h (3.6) 

we obtain for the transverse tangential stresses in the plate from the first two equations 

(3.7) 

Substituting (3.1) and (3,4) into (1.4), and (3-l) and (3.7) into the third equation of 
(1.5) and integrating the equations hence obtained with respect to z .between x = - fa 
and z = h taking (3.6) into acamnt. we obtain the following aamplete system of dif- 
ferential equations in the desired functions cp, . $, f and W: 

i 
D= (3.8) 

The following conditions, which connect the boundary values of the electromagnetic 
field intensity components, are also obtained from the systems (1.4) upon execution of 
the above-mentioned operation: 

~~(h=+h;)+~~(h,i+h;-)- yah2 $hw=O 

- f-& (h,’ + h,_) = 29(&+ + EC) +&$(E,++B;) 
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and from the system (1.5) the conditions 

Therefore, the problem of the vibration of an electrically conducting isotropic plate 
in an external magnetic field, formulated in Sect.1, leads to the joint solution of the 

system of differential equations (3.8) of magnetoelasticity for the interior domain of the 

plate. and the electrodynamics equations (1.3) in the exterior domain. Conditions (3.9) 
and div EC*) = 0, diVH(n) = 0 (n = 1 for z > h and n = 2 for z < - /L) 

will be the boundary conditions of the problem in addition to the customary plate fixing 

conditions and the continuity conditions for the quantities E x, E,, h, on the plate 

surface. 

4, As an illustration, let us apply the method expounded above to solve the problem 
of vibrations of an infinite plate with constant finite electrical conductivity in the pre- 

sence of an external magnetic field with intensity vector parallel to the s-axis. For 
simplicity, cylindrical bending is considered, and rotational inertia and moments 

R (X, Y, 2) are neglected. 
It follows from the conditions of the problem that E, = E, = h, = 0 in the whole 

space. Conditions (3.10) are satisfied identically. In this case, the system of equations 

(3. 8) takes the form 

#; I %e;Hl (&+%)$2ph%=O (4.1) 

The electrodynamics equations in the exterior domain (1.3) are converted to the form 

Ah(n) - 
i P/z?) 

-_=o, 0 (4.2) x 
C2 at2 

A@‘----= 
1 a2Ep o 

c2 c)t2 

while the boundary conditions of the problem will be 

-& (kc+ + Iz,-) = $ (h,+ + Ii,-) = 0, 
ahg) ahp) 
-ii,_ +r=o 

E:’ Ir=h = Ef’ (z--h = J) (5, t), h!l'jz=h =hj')(r=--h = f(z, t) (4.3) 

and the boundedness condition for the perturbations at infinity. 

We seek the solution of (4.1) and (4.2) in the form of waves being propagated along 
the 2’ -axis w = wOei (d-k), 9 = .qoei (of-iix) 

f ‘= f oei (of-kc), Et,“) = tp” (,,) ei (wt-h’x) 
II (4.4) 

/I?) = @,,(z)$(~~-W, /po L = J'n(z)ei(+Jd 

Here, all the functions of z are unknown and to be determined, k = z / h is the wave 
number, h is the half-wavelength, o the vibration frequency. Substituting (4.4) into 
(4.2) we obtain the equations defining the mentioned unknown functions 
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CD,“-- k2- ~~@,=O, F,“--(k2- .$)I;,=O, Y,“-(k2-$)Y,==O 
/’ 

Therefore 

@, = A,e-kIz, @a = A &IL 
2’ 1 

F1 = Ble+Z, F, = B2efiIZ 

Satisfying the first two equations of the system (4.1) and the boundary conditions(4.3), 

we find the magnitudes of the induced magnetic and electric field intensity components 

in the whole space as a function of the plate deflections 

/l z&W z ti ’ 
h,= -ikqw, E,- - Tw 

h!+f’ = qklekl(h-z) w, hc2) = __ qklekl (h+z) w x (4.6) 

./l(l) = __ ik qekt (h-2) w, L hc2) = _ ik qeXl(h+z) w L 

q=H, l-t 
[ 

c?kl (I + hh) 1-l 
io4z& J 

Substituting (4.4) and (4.6) into the third equations of the system (4.1). we obtain an 
equation to determine the vibrations frequency 

0=-S-F- 
Hlkl(1 + Ml) 

4nph 
q=o (4.7 ) 

where 52 is the natural plate vibrations frequency in the absence of a magnetic field. 

Comparing the values of the quantities in (4.6) with the corresponding values of the 
same quantities obtained in [2] on the basis of the exact solution, shows that the results 

found by solving the problem by the method proposed agree with the first approximation 
of the results of the exact solution expanded in a power series in vz. In conformity with 

The first approximation of the exact solution is obtained from the mentioned expansion 
by neglecting the quantities 1 v2 1 h2 as compared with unity. 

The authors are grateful to A. L. Gol’denveizer for discussing the research and for 

valuable comments. 
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